## 20170429

### Astronomy midterm question: example of a cooler star larger than a hotter star?

Astronomy 210 Midterm 2, spring semester 2017
Cuesta College, San Luis Obispo, CA

An astronomy question on an online discussion board[*] was asked and answered:
Pdg: What is an example of a cooler star being larger than a hotter star?
nin: The sun and a red star like Betelgeuse.
Discuss why this answer is correct, and how you know this. Explain using Wien's law, the Stefan-Boltzmann law and/or an H-R diagram.

Solution and grading rubric:
• p:
Correct. Uses Wien's law to determine that the sun would be the hotter (yellow) star, while Betelgeuse would be the (red) cooler star. Then uses the Stefan-Boltzmann law and/or interprets H-R diagram to demonstrate how Betelgeuse would need to be either a red giant or a red supergiant (which it actually is) in order to be cooler and larger than the sun, a medium-mass main-sequence star.
• r:
Nearly correct (explanation weak, unclear or only nearly complete); includes extraneous/tangential information; or has minor errors. Compares two stars (hotter, smaller vs. cooler, larger), where the hotter star is more luminous than the cooler star, but does not explicitly compare the sun versus a red (giant/supergiant) star.
• t:
Contains right ideas, but discussion is unclear/incomplete or contains major errors. At least discussion demonstrates understanding of Wien's law, but the Stefan-Boltzmann law and/or H-R diagram discussion is garbled, with a hotter, smaller sun having the same luminosity as a cooler, larger red (giant/supergiant) star; or may have erroneously claimed that the two stars have the same temperature, but Stefan-Boltzmann law and/or H-R diagram discussion is consistent with this mistake in Wien's law.
• v:
Limited relevant discussion of supporting evidence of at least some merit, but in an inconsistent or unclear manner. At least attempts to use Wien's law, the Stefan-Boltzmann law, and/or H-R diagram.
• x:
Implementation/application of ideas, but credit given for effort rather than merit. Discussion not clearly based on Wien's law, the Stefan-Boltzmann law, and/or H-R diagram.
• y:
Irrelevant discussion/effectively blank.
• z:
Blank.
Section 30674
Exam code: midterm02nDcc
p: 9 students
r: 9 students
t: 2 students
v: 1 student
x: 0 students
y: 0 students
z: 0 students

A sample "p" response (from student 9433):